Mathematical Modeling for Brain Tumors Including Fractional Operator 171

[28] A. Einstein,

Investigations on the theory of the Brownian movement.

Dover Publications Inc., 1956.

[29] I. M. Sokolov and J. Klafter, “From diffusion to anomalous diffusion: a

century after einstein’s brownian motion,” Chaos, vol. 15 2, p. 26103,

2004.

[30] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffu-

sion: a fractional dynamics approach,” Physics Reports, vol. 339, pp. 1–77,

2000.

[31] M. M. Meerschaert, D. A. Benson, and B. Bäumer, “Multidimensional ad-

vection and fractional dispersion,” Physical Review. E, Statistical Physics,

Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 59 5 Pt A,

pp. 5026–8, 1999.

[32] M. M. Meerschaert, D. A. Benson, and B. Baeumer, “Operator lévy mo-

tion and multiscaling anomalous diffusion,” Physical Review. E, Statisti-

cal, Nonlinear, and Soft Matter Physics, vol. 63 2 Pt 1, p. 021112, 2001.

[33] R. Schumer, D. A. Benson, M. M. Meerschaert, et al., “Multiscaling

fractional advection‐dispersion equations and their solutions,” Water Re-

sources Research, vol. 39, 2003.

[34] C. A. Valentim, N. A. Oliveira, J. A. Rabi, et al., “Can fractional calcu-

lus help improve tumor growth models?,” Journal of Computational and

Applied Mathematics, vol. 379, p. 112964, 2020.

[35] N. Miljković, N. Popovic, O. Djordjevic, et al., “Ecg artifact cancellation

in surface emg signals by fractional order calculus application,” Computer

Methods and Programs in Biomedicine, vol. 140, pp. 259–264, 2017.

[36] C. A. Valentim, F. D. C. Bannwart, and S. A. David, “Fractional calculus

applied to linear thermoacoustics: A generalization of rott’s model,” 2018.

[37] S. A. David, J. A. T. Machado, D. D. Quintino, et al., “Partial chaos

suppression in a fractional order macroeconomic model,” Mathematics

and Computers in Simulation, vol. 122, pp. 55–68, 2016.

[38] K. Leyden and B. Goodwine, “Using fractional-order differential equa-

tions for health monitoring of a system of cooperating robots,” 2016 IEEE

International Conference on Robotics and Automation (ICRA), pp. 366–

371, 2016.

[39] H. Enderling, J. C. L. Alfonso, E. G. Moros, et al., “Integrating math-

ematical modeling into the roadmap for personalized adaptive radiation

therapy,” Trends in Cancer, vol. 5 8, pp. 467–474, 2019.

[40] A. d’Onofrio and A. Gandolfi, “Mathematical oncology 2013,” 2014.